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Abstract—Reed Solomon error correction has several applications 
in broadcasting,in particular forming part of the specification for the 
digital terrestrial television standard known asDVB-T. 
Hardware implementation for coders and decoders for Reed Solomon 
error correction are complicated and require some knowledge of the 
theory of the Galois field on which they are based.This paper present 
the underlying mathematics and algorithm used for coding and 
decoding with particular emphasis on their realization in logic 
circuits.. 
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1. INTRODUCTION 

Many digital sampling applications in broadcasting use 
Forward error correction a technique in which redundant 
information is added to the signal to allow the receiver to 
detect and correct errors that may have occurred during 
transmission. 

Reed Solomon codes are a particular case of non-binary BCH 
codes. They are extremelypopular because of their capacity to 
correct burst errors. Their capacity to correct burst errors 
stems from the fact that they are word oriented rather than bit-
oriented. A bit-oriented code such as a BCH code would treat 
this situation as many independent single-bit errors. To a Reed 
Solomon code, however a single error means any or all-
incorrect bits within a single word. Therefore the RS (Reed 
Solomon) codes are designed to combat burst errors in a 
channel. Infact RS codes are a particular case of non-binary 
BCH codes. 

2. REED SOLOMON  

The structure of a Reed Solomon code is specified by the 
following two parameters: 

• The length of the code-word m in bits,often chosen to be 8, 
• The number of errors to correct T. 
 
A code-word for this code then takes the form of a block of m 
bit words. The number of words inthe block is N, which is 

always equal to N = 2m – 1 words, of which 2T words are 
parity or checkwords. For example, the m = 8, t = 3 RS code 
uses a block length of N = 255 bytes, of which 6are parity and 
249 are data bytes. The number of data bytes is usually 
referred to by the symbolK. Thus the RS code is usually 
described by a compact (N,K,T) notation. The RS 
codediscussed above for example has a compact notation of 
(255,249,3). When the number of data bytes to be protected is 
not close to the block length of N defined by N = 2m – 1 
words atechnique called shortening is used to change the block 
length. A shortened RS code is one inwhich both the encoder 
and decoder agree not to use part of the allowable code space. 
Forexample, a (204,188,8) code would only use 204 of the 
allowable 255 code words defined by them = 8 Reed Solomon 
code. An error correcting code, such as an RS code, is said to 
besystematic if the user data to be encoded appears verbatim 
in the encoded code word. Thus a systematic (204,188,8) code 
would have the 188 data bytes provided by the user appearing 
verbatim in the encoded code word, appended by the 16 parity 
words of the encoder to form one block of 204 words. The 
choice of using a systematic code is merely from the point of 
simplicity as it lets the decoder recover the data bytes and strip 
off the parity bytes easily, because of the structure of the 
systematic code. 

3. GALOIS FIELD 

A field is a set of elements on which two binary operations 
can be performed. Addition andmultiplication must satisfy the 
commutative, associative and distributive laws. A field with a 
finitenumber of elements is a finite field. Finite fields are also 
called Galois fields after their inventor. An example of a 
binary field is the set {0,1} under modulo 2 addition and 
modulo 2multiplication and is denoted GF(2). The modulo 2 
addition and subtraction operations aredefined by the tables 
shown in the following figure. The first row and the first 
column indicate theinputs to the Galois field adder and 
multiplier.  

For e.g. 1 + 1 = 0 and 1 * 1 = 1. 

In general if p is any prime number then it can be shown that 
GF(p) is a finite field with p elementsand that GF(pm) is an 
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extension field with pm elements. In addition the various 
elements of thefield can be generated as various powers of one 
field element a, by raising it to different powers.For example 
GF(256) has 256 elements which can all be generated by 
raising the primitiveelement 2 to the 256 different powers. 

In addition, polynomials whose coefficients are binary belong 
to GF(2). A polynomial over GF(2)of degree m is said to be 
irreducible if it is not divisible by anypolynomial over GF(2) 
of degreeless than m but greater than zero. The polynomial 
F(X) = X2 + X + 1 is an irreducible polynomialas it is not 
divisible by either X or X + 1. An irreducible polynomial of 
degree m which dividesX2m–1 + 1, is known as a primitive 
polynomial. For a given m, there may be more than 
oneprimitive polynomial. An example of a primitive 
polynomial for m = 8, which is often used in 
mostcommunication standards is F(X) = 1 + X2+ X3+ X4+ X8. 

The primitive polynomial, 

p(x)=x4+x+1 (1) 

For GF with the field generator polynomial shown in (1),we 
can write, 

α 4+α +1 

 

Fig. 1: The field elements for GF(16)with p(x)=x4+x+1 

Z3=a3b3+a3b0+a2b1+a0b3+a1b2 

Z2=a3b3+a3b2+a2b3+a2b0+a1b1+a0b2 

Z1=a3b2+a2b3+a3b1+a2b2+a1b3+a1b0+a0b1 

Z0=a3b1+a2b2+a1b3+a0b0 

For constant =15, 

Z3=b0+b1+b2 

Z2=b0+b1 

Z1=b0 

Z0=b0+b1+b2+b3 

For constant =3, 

Z3=b3+b2 

Z2=b1+b2 

Z1=b3+b0+b1 

Z0=b0+b3 

For constant =1, 

Z3=b3 

Z2=b2 

Z1= b1 

Z0=b0 

For constant =12, 

Z3=b3+b0+b1 

Z2=b0+b2 

Z1=b3 +b1 

Z0=b1+b2 

Table 1: Comparison between Generalised and Constant 
Optimized Multiplier 

No. of Gates 
reuired 

Generalised 
Multiplier 

Constant (15)Optimized 
Multiplier 

AND Gate 22 0 
XOR Gate 18 6 

4. CONCLUSION 

The number of AND gates are completely reduced when 
Galois field multiplier is optimized using constant.Hence for 
entire architecture required no. of XOR gates are less. 
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